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Abstract 
In this report, I present the designs of two diffractive optical array generators 
used in an optical analog-to-digital converter. The designs follow a proce- 
dure that I developed for the design of general diffractive optical elements. 
I consider both separable and nonseparable approaches to designing a 5 x 5 
binary-phase fanout, and discuss indirect and direct optimizations for the 
nonseparable approach. I use a nonseparable approach with direct optimi- 
zation to design an 8-phase-level 7x7 array generator. 
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1. Introduction 
Diffractive optical elements (DOEs) are thin optical elements with func- 
tions that derive from diffraction, as opposed to reflection or refraction. 
Diffractive optics both supplement and complement refractive optics. That 
is, although a DOE can be used to replace refractive components, it can 
also be used in combination with refractive optics to enhance the overall 
performance of an optical system. Most important is that DOEs can be 
designed and fabricated to implement functions that refractive and reflec- 
tive components cannot implement. 

The widespread application of DOEs requires an understanding of 
diffractive design. Although archived publications on this topic are avail- 
able [1,2], they typically concentrate on theory and provide few examples. 
The objective of this report is to highlight, through example, the important 
issues in diffractive design. The two DOEs I discuss here were produced 
for an optical analog-to-digital (A/D) converter designed by MAJ Barry 
Shoop of the U.S. Military Academy [3]. 

Section 2 includes a brief review of diffractive design, and sections 3 and 4 
show design examples. 



2. Diffractive Design 

Figure 1. Coherent 
optical Fourier 
transformer. 

The design of a DOE incorporates three primary steps: (1) understanding 
the physics of the design problem (analysis), (2) translating that physical 
understanding into mathematics and defining an appropriate optimization 
problem (synthesis), and (3) executing the design and fabricating the ele- 
ment (implementation). Following is a further breakdown of each step. 

2.1      Analysis 

Step 1: Understand the physics of image formation using the DOE. 

Step 2: Understand the fabrication of the DOE from data generated by 
computer. 

By "understand" I mean to imply the selection of a model. The coherent 
Fourier transformer shown in figure 1 is a valid representation of the 
optics for the two examples that I consider here. Under the assumptions of 
scalar diffraction theory, the DOE is a physically thin element that modu- 
lates the complex wave amplitude of an incident wavefield according to 

P(u,v) = A(u, v) exp [j9 (u, v)] CO 

If the source illumination is a spatially coherent, quasi-monochromatic 
plane wave with wavelength A, a Fourier transform relationship exists 
between the diffractive element P(u, v) in the pupil plane and its response 
p(x, y) in the image plane [4], 

p(x,y) = J J P{u,v)exp 
2TT , N dudv (2) 

where/is the focal length of the lens. 

Assuming that a multistep etch procedure is used to fabricate the DOEs 
[5], if the fabrication process from computer-generated data to diffractive 
element is linear and introduces no errors, I can model the DOE as a 
multilevel quantized phase element (i.e., A(u,v) = 1 and 6(u,v) = 
2%e/L,e = [0;L-l]). 

[\ 

V 
DOE 
P(u,v) 

Output image 
p(x,y) 

*I have ignored complex scale factors. 



The DOEs that I considered each produce an array of point sources when 
illuminated by a single point source and are, therefore, referred to as array 
generators. I represent the desired array by q(x, y)., 

N 

q(x,y) = Yl QnS (x -xn,y- yn), (3) 

where N is the total number of spots in the array (xn, yn) are their spot 
locations, and the phasor qn is their spot magnitude and phase. If the spot 
locations (xn, yn) are rational, the Fourier transform Q(u, v) of q(x, y) is 
periodic and, therefore, P(u, v) must also be periodic, 

P(u,v) = P(u,v)  * * iepl(u,v), (4a) 

where p(Uj v) is a single period representation of the array generator, with 
unity extent alongboth axes. The two-dimensional convolution (repre- 
sented by * *) of p(w, v) with the replicating function repl(u, v) tiles the 
Fourier plane (see fig. 2). As a consequence, the points in image space at 
which the generated array has value are determined by the lattice array 
samp (a:,y), 

P(x, V) = p(x, y) samp(x, y). (4b) 

The functions repl(u, v) and samp(a;, y) form a Fourier transform pair. 

2.2      Synthesis 

Step 3: Define the design metric. 

Step 4: Define the optimization problem. 

The fidelity of an array generator is based on its ability to generate the 
desired spot array with high diffraction efficiency and minimum intensity 
error. Diffraction efficiency is the ratio of the energy diffracted into the 
desired signal to the total energy in the image plane, 

/    /    \p(x,y)\2dxdy     f    f    \p(x,y)\2dxdy 
(x,y)eX {x,y)&X 

V co    oo —     oo    oo 

/   / \p(x,y)\*dxdy J   J \P(u,v)\2dudv 
— CO —CO — OO —CO 

(x,y)ex 

Intensity error is 

/     /     \p(x,y)\2dxdy = J2\Pn 
<~ \^v n=l 

*L (5> 

/    /    \\p(x,y)\2-a\q(x,y)\2\2dxdy 
(x,y)ex 

Jl\\Pn\2 ~ a\qn\2?. (6) 
n=l 

3 



My use of the scale factor a indicates that the absolute intensity of the 
response is not critical; rather, the response p(x,y) should exhibit the 
shape described by q(x, y). This is defined as an application of scale free- 
dom [6]. However, a scale factor amin exists that minimizes e-mt: 

an 

N I    I    \p(x,y)r\q{x,y)\ dxdy       £ |Pnp|gn|2 
(x,y)eX     _ n=i  fj\ 

J    J     \q(x,y)\dxdy 
{x,y)€X 

N 
£ knl4 

ra=l 

The scale amin yields the minimum fluctuation from the desired intensity 
by the generated intensity, which is represented in figure 3. 

The physical extent of the detector in the image plane and the fact that it 
responds to intensity influence the definition of the error. I am concerned 
only with the intensity of the response within the signal window x; the 
phase within the signal window and the total response outside of the sig- 
nal window are unimportant. Thus, I am also using phase-freedom and 
complex-wave amplitude in my designs [6]. However, a tradeoff exists 

Figure 2. Transform 
relationship between 
Fourier replicating 
function and lattice 
of image sampling 
points that it 
generates: (a) tiling of 
Fourier plane with 
P{u,v) by repl(tt,v); 
(b) lattice image 
sample points 
samp(x,y) by 
repl(it,u)- 

(a) (b) 

(1/2, 1/2) 

k(1.1) 

Figure 3. Significance 
of scale factor ocmin in 
determining intensity 
error. 
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between diffraction efficiency and error (i.e., minimum error can be 
achieved by reducing diffraction efficiency). Likewise, high diffraction effi- 
ciency can be achieved by allowing for large levels of error. One deter- 
mines these measures after the design is complete. 

For optimal design, it is necessary to define a metric that accounts for this 
tradeoff before beginning the work, and to use it within an optimization 
routine. I have used 

N 
|2       „      i_   |2 

&ub =  J2\\Pn\    -<*vb\qn\ 
n=l (8) 

where aub = r)ub/N and r}ub is the diffraction efficiency upper bound [7], 

Vub = 

1/2    1/2 12 

f    f   \Q(u,v)\dudv 
-1/2 -1/2 
1/2    1/2 • (9) 
/    /   \Q(u,v)\2dudv 

-1/2 -1/2 

Thus, the intensity distribution aub\q(x,y)\2 represents the maximum 
array intensity that a phase-only DOE can generate. Although T] = 100 per- 
cent also represents an upper bound on diffraction efficiency, it is too gen- 
eral to be effective; r\ub provides more specific information about the par- 
ticular design of interest. Because aub\q(x, y)\2 represents a fixed, upper 
limit in the space of solutions, the metric eub is an absolute distance 
measurement. 

2.3      Implementation 

Step 5: Select a design algorithm and performing the optimization. 

Step 6: Fabricate the DOE from the computer-generated data. 

Step 7: Test the DOE. 

Steps 5 to 7 are straightforward—select the design, fabricate the DOE, and 
test its performance in the system—but require many practical decisions 
and, most importantly, a considerable expenditure of resources. 

One of these decisions is determining the physical dimensions and mini- 
mum features of the DOE before fabrication. The transform relationship 
between P(u, v) and p(x, y) assumes that P(u, v) has unit extent along 
both axes. The spots of p(x, y), therefore, are located at integer multiples of 
A/. For an arbitrary spot spacing d along one axis, the unit period width 
Wis 

W = Xf/d. (io) 



If the total length of the DOE is D in one dimension, the number of replicas 
M of the unit period is 

M = D/W. (U) 

Further, if the minimum feature is A, the number of addressable features 
L within the unit period is 

L = W/A. (12) 

The total number of addressable features in the element is its space- 
bandwidth product (SBWP) 5, 

S = ML = D/A. (13) 

For example, for a 1-cm, one-dimensional element written with l-^m fea- 
tures, S = 104. Due to the fact that, at a minimum, it takes two features to 
code a single value in the desired response, the SBWP has a direct impact 
on design. Therefore, the maximum number of points that can be specified 
in q(x, y) is S/2. 



3. Design Examples 

3.1      Example 1: (0,7r)-Binary-Phase 5x5 Fanout 

The first design example is a (0,7i)-binary-phase 5x5 fanout (a "fanout" 
implies that all spots have equal intensity). The illumination wavelength 
A = 850 nm and the focal length of the lens / = 50 mm. The spacing 
between spots along both axes is d = 250 urn. The grating period is, there- 
fore, 170 x 170 urn2. The element size Dx x Dy = 5 x 5 mm* which implies 
that the unit cell is repeated 30 x 30 times. 

For this example, two approaches to design are possible: separable and 
nonseparable. A two-dimensional function is separable if its behavior 
along one axis is independent of its position on the other axis. In a sepa- 
rable design, one considers the desired performance along the horizontal 
and vertical axes separately, and crosses the one-dimensional results to 
construct a two-dimensional array generator. A nonseparable design con- 
siders the two-dimensional performance as a whole. 

The design requires determination of the upper bound on the diffraction 
efficiency. Except for the constraints imposed on array phase by a binary- 
phase array generator, which I discuss below, determination of the diffrac- 
tion efficiency upper bound is independent of any fabrication consider- 
ations. The upper bound represents the theoretical upper limit on the 
diffraction efficiency with which the desired array can be generated. 

The expression for the diffraction efficiency upper bound requires com- 
plete specification of the desired array q(x, y) in terms of magnitude and 
phase. The design, however, considers only the intensity \q(x, y)\2, and so 
only the magnitude \q{x, y)\ is specified. This limitation is, however, to 
one's advantage in terms of high diffraction efficiency design, since the 
freedom to specify phase allows a choice of the phase that generates the 
highest diffraction efficiency. 

To determine this phase, the expression for the diffraction efficiency upper 
bound with respect to the array phase [7,8] must be maximized. However, 
a binary-phase DOE generates a response that is Hermitian (i.e., 
p(x, y) = p*(-x, -y)); therefore, the phase of q(x, y) is not completely 
arbitrary, but must be odd. The array phase 6ub(x, y), 

Gub(x,y) x = -2    x = -l    x = 0      x=l      x = 2 

V = -2 

V = -l 

y= o 

y=  1 

y=2 

-1.3915  1.2433 -1.2749  1.6429 0.7962 

-0.1648  1.6689 2.3327 -0.0511 -0.3013 

1.5014 -2.5544 -3.1416  2.5544 -1.5014 

0.3013  0.0511 -2.3327 -1.6689  0.1648 

-0.7962 -1.6429 1.2749 -1.2433  1.3915 



yields an upper bound of 78.88 percent; thus, auh = 31.5 x 10 \ The real- 
valued Fourier transform Qub(u, v) of qub(x, y) = \q{x, y)\ explffW, y)\ 
is represented in figure 4. 

3.1.1   Separable Design 
The nature of the 5 x 5 fanout allows construction of a two-dimensional 
array generator from a single one-dimensional, 5-spot fanout. Further, the 
array generator's binary-phase and small number of spots allow use of 
so-called Dammann design techniques [2,9]. 

To achieve a uniform-intensity spot array, Dammann recognized that a 
one-dimensional, (0,7r)-binary-phase array generator can be represented 
completely by the locations zk at which its phase transitions occur. Con- 
sider figure 5 and the representation of P(u) in terms of a binary ampli- 
tude function E(w), 

P(u) = 2E(u) - rect(u), (14a) 

where 

K-\ 

E(u) =  J2 rect u - (zfc+i + zk) /2 

Zk+l ~ zk 
(14b) 

Figure 4. 
Representation of 
Qub(u,v) for a 5x5 
fanout (two periods 
are shown). 

Figure 5. Binary 
amplitude 
distribution X(u) 
used to describe a 
one-dimensional 
binary-phase array 
generator. 

Ifu) 

1/2    21 22      z3 z5 
zK-2 ZK-1  ZK +1/2 



If repl(u) = comb(u), where comb(u) = g 6(u- n), then, by virtue 

of the self-transforming properties of the "comb-function, the generated 
array is 

00 

p(x) =   J2   [2a(n) - sinc(ra)] 8{x~n), 
n=—oo (15a) 

where 

K-l 
ain) =  E (zk+i - Zk) sine [(zk+1 - zk) n) exp [jn (zk+1 + zk) n].   ,, _ , 

fc=i (15b) 
fc odd 

The comb-function replication generates a spot array that assumes values 
at integer locations in the image plane and, from symmetry, generates an 
array that has an odd number of spots. To generate an even number of 
spots, it is necessary to use an alternative replication [10], 

P(u) = P(u) * exp(7'7n/)comb(» , ,     . 
Uöa) 

which generates 

p(x) = p(rc)comb(:r - 1/2). 
(16b) 

The w-phase change between replicas acts as a spatial carrier to translate all 
spots off axis without changing the spacing between sample points. In con- 
junction with the symmetry imposed by the grating, this implies that the 
array has an even number of spots. 

To determine the phase-transition locations, the generated intensity \p(x)\2 

must be set proportional to the desired intensity \q(x)\2, \p(x)\2 = 
<*I?WU for x = [0, N]. Due to the Hermitian symmetry imposed by a 
(0, 7T)-binary-phase array generator, the constant a is real-valued. The 
iV + 1 real-valued equations can be solved for a and the phase transitions 
zk, k = [1,K]. Because the system of equations is nonlinear, there is no 
constraint that the number of unknowns must equal the number of equa- 
tions—the total number of transitions K is arbitrary. However, in general, 
the fewer the number of phase transitions, the higher the diffraction 
efficiency. 

The phase transitions for many one-dimensional, Dammann gratings 
((0, ^-binary phase gratings) can be found in several references (for 
example, [11,12]). The phase transitions within a unit cell of length unity 
that generate a 5-spot fanout with high diffraction efficiency are shown in 
table 1. The value of a for the one-dimensional problem is 0.1548, the 
square of which (24.0 x 1CT3) is the value for the two-dimensional problem 



Table 1. Phase transitions in a Dammann grating to produce a 5-spot array generator.  

End 
point Unit cell 

Unit interval 

170-um period (um) 

Quantized 170-um 
period (um) 

Quantized unit 
interval 

End 
point 

Z\ Z2 Z3 ZA 

-0.50000 

0.00 

0.0 

-0.50000 

-0.36766 -0.01930 0.01930 0.36766 0.50000 

22.50 81.72 88.28 147.50 170.00 

22.0 81.4 88.0 147.4 170.5 

-0.37097 -0.02258 0.01613 0.36452 0.50000 

Fabrication requires the conversion of the normalized locations of phase 
transition to distances through multiplication by the grating period and 
addition of an appropriate shift; these values are also indicated in the table. 
Unfortunately, the fabrication process does not have unlimited resolution, 
and distances must be quantized according to the minimum placement 
resolution and minimum features of the fabrication technology. Typical 
values for fabrication technology available today are 0.1-um placement 
resolution and 1-um minimum feature. Table 1 includes the phase transi- 
tions for a minimum feature of 1.1 urn. The impact on fabrication param- 
eters is shown in table 2. 

The separable two-dimensional pattern generated from the one- 
dimensional structure is represented in figure 6. The fidelity of the 
generator's response is summarized in table 3. The generator's intensity 
response, as well as that of all the other designs, is listed in appendix A. 
For a fanout element, in which case \qn\ = h equation (7) reduces to 

1 N 

—   Olr, 
JV n=l 

(17) 

Further, I define erms as 

erms = \AWiV (18) 

The ratio erms /iave is, in essence, a per-spot measure of the noise fluctua- 
tions (i.e., a noise-to-signal ratio per spot). The tradeoff between diffraction 
efficiency and error is clearly evident in table 3. 

3.1.2   Nonseparable Design 

In the previous section, separable design of the array generator used ana- 
lytic techniques to determine the locations of phase transition; however, in 
general, the desired design metric must be optimized explicitly. This is the 
approach that I take in this section. The optimization problem can be 
stated in the following way. 

Problem 1: Minimize e^ over p(u,v) = A(u,v) exp[j6(u,v)] subject 
to A{u,v) = 1 and Q(u,v) = {2iri/L;£. = 1,2, ...,L - 1}. 

10 



Table 2. Summary of 
fabrication param- 
eters for 5 x 5-spot 
array generators.* 

Design 
A = 850 nm, 
/ = 50 mm 

Desired 

Separable 

Nonseparable 

A, 
(Urn) 

wx 
(|lm) 

MT Dx 
(mm) 

— —       170.00      — 

1.10        155      170.50     30 

1.33        128      170.24     30 

dx 
(Um) 

5.000 250.00 

5.115 249.27 

5.107 249.65 

*Due to square nature of array generator, features in only one dimension are 
indicated. 

Figure 6. 
Representation of 
Dammann-designed 
separable array 
generator (two 
replications of the 
unit cell are shown). 

Table 3. Summary of 
response characteris- 
tics for 5 x 5-spot 
array generators. 

Array generator 
7 
ave 

(Xl0-3) (XIO-3) 
ermsf  ave 

(%) 
Order 

(computing time) 

Upper bound 78.88 31.5 — — Minutes 

Dammann grating 59.89 24.0 0.06 0.24 Negligible 

Quantized design 80.58 32.2 9.60 29.65 Negligible 

Iterated design 69.67 27.9 1.70 5.98 Minutes 

Annealed design 76.34 30.5 1.40 4.46 Hours 

Two basic approaches to solving problem 1 have emerged in the DOE 
literature—one that is direct and one that is indirect [2]. In an indirect 
design, the unconstrained design problem must be solved. 

Problem 2: Minimize e^b over P{u, v). 

The solution of problem 2 Qub(u, v) is then mapped onto the fabrication 
constraints. Mapping can be as simple as quantization, or it can be an opti- 
mal routine. In a direct design, the constraints of fabrication must be 
applied directly, as in problem 1. 

11 



Due to fabrication constraints, the ordinate values (u, v) are not continu- 
ous, but discrete (i.e., (u, v) = (iuA, ivA), where A is the minimum fea- 
ture size and iu and iv are integers. To accommodate the use of the fast 
Fourier transform in the solution of problems 1 and 2,1 divided the unit 
cell into 128 minimum features, which correspond to A = 1.33 urn. The fab- 
rication parameters for nonseparable design are summarized in table 2.1 
solve problems 1 and 2 in the following sections. 

3.2.3   Indirect Design 

Indirect design of the array generator requires the solution of problem 2, 
which, as I stated, is the complex function Qub{u, v). The second step in 
the design is the application of the fabrication constraints, which, for this 
problem, implies that the DOE can assume only two values: -1 and +1. 
This constraint can be applied by simple quantization, which yields the 
array generator represented in figure 7. Its performance, which is notably 
poor, is summarized in table 3. It should not be concluded from this sum- 
mary, however, that indirect methods always produce poor results. In this 
case, the poor results were a consequence of the parameters particular to 
this design. 

3.1.4   Direct Design 

Two general nonlinear optimization algorithms capable of solving prob- 
lem 1 are represented in figure 8 [13]. The operator T reflects the under- 
standing (from step 1) of the influence that the DOE has on the image it 
produces, and the operator E is the design metric. 

Fienup [13] refers to the algorithms in figures 8(a) and (b) as error-reduc- 
tion and input-output; however, to indicate the nature of data flow, I prefer 
the nomenclature bidirectional and unidirectional. Note that use of a 
bidirectional algorithm implies not only an understanding of the operator 
T, but also an understanding of its inverse, T""1 (i.e., an understanding of 
how variations in the response affect the DOE). Under my assumptions, 
the system T is modeled by a Fourier transform, which is easily inverted. 
Therefore, figure 8(a) represents the iterative Fourier transform algorithm 
(IFTA) [6,13,14]. 

Figure 7. 
Representation of 
indirect design of a 
nonseparable array 
generator (two 
replications of the 
unit cell are shown). 

12 



Figure 8. Optimi- 
zation algorithms 
used for design: 
(a) bidirectional; 
(b) unidirectional. 

(a) Pn      ^ T 
Pn 

E 

v 
Filter 

constraints 
Response 
constraints 

4 Pn 

?n T-1 

(b) T 
Pn 

en 

Although the IFTA is simple in its implementation, it is prone to stagnate 
in local minima. To overcome this problem, effective use of the IFTA 
requires the exploitation of the design freedoms so that the algorithm can 
modify the complex transmission values of the DOE, while maintaining 
the desired performance objective in the image plane [6]. 

By contrast, the philosophy behind unidirectional algorithms is that, if the 
DOE can be characterized by a finite set of quantized parameters (e.g., 
phase levels), a finite (albeit large) number of permutations of these 
parameters exists. The objective of the algorithm is to find the permutation 
that achieves the optimization in an efficient manner. Two examples of uni- 
directional algorithms are gradient descent methods and annealing 
algorithms [15-17]. In these algorithms, the present DOE is a function of 
the previous DOE and the performance generated by it. When the model 
of the optical system cannot be inverted, unidirectional algorithms must be 
used. 

The results of the direct solution of problem 1, using both the IFTA and 
simulated annealing, are represented in figure 9 and summarized in table 
3. Although there is a notable improvement in performance over quantiza- 
tion, it is again impossible to make general statements about the effective- 
ness of simulated annealing over IFTA from this example. The diffraction 
efficiency of the IFTA-designed array generator is lower than that of the 
annealed array generator, but their performances are otherwise compa- 
rable. It is true, however, that simulated annealing requires more comput- 
ing time than the IFTA. 

13 



Figure 9. 
Representation of 
direct design of 
nonseparable array 
generators: (a) IFTA 
design; (b) annealed 
design (two replica- 
tions of the unit cells 
are shown). 

(a) (b) 

V.V. 

3.2      Example 2: 8-Phase-Level 7x7 Array Generator 

The second design example is for an 8-phase-level 7x7 array generator 
that has the nonuniform intensity distribution \q(x, y) I  indicated below. 

l?0,y)|2 x = — 3 x = -2 x = -l x = 0 x = 1 x = 2 x = 3 

y = -3 0.0003 0.0019 0.0051 0.0068 0.0051 0.0019 0.0003 

y = -2 0.0019 0.0103 0.0248 0.0328 0.0248 0.0103 0.0019 

y = -i 0.0051 0.0248 0.0583 0.0766 0.0583 0.0248 0.0051 

y = 0 0.0068 0.0328 0.0766 0.0000 0.0766 0.0328 0.0068 

y=\ 0.0051 0.0248 0.0583 0.0766 0.0583 0.0248 0.0051 

y = 2 0.0019 0.0103 0.0248 0.0328 0.0248 0.0103 0.0019 

y = 3 0.0003 0.0019 0.0051 0.0068 0.0051 0.0019 0.0003 

Unlike the 5x5 fanout, the spot spacing along the horizontal and vertical 
axes is unequal: dx x dy = 160 x 80 urn2. The wavelength A = 850 run and 
the focal length / = 50 mm; therefore, the grating period Wx x Wy = 
265.625 x 531.25 \im2. The size of the DOE was fixed at 1 x 1 cm2, and so, 
for ease of fabrication and design, I selected the minimum feature 
Ax x Ay = 2.1 x 4.2 jun2. 

I designed a nonseparable DOE using a direct approach that I imple- 
mented using the IFTA. I selected the number of features in a unit cell to be 
128 x 128, which yields a grating period of 268.8 x 537.6 |xm2. The unit 
period was replicated 37 x 18 times to produce an element 9.9456 x 9.6768 
mm2. Given these parameters, the spot spacing is 158.11 x 79.06 \im2. (Note 
that a separable design is not possible because the DOE has eight phase 
levels—when crossed, an 8-level, one-dimensional DOE does not yield an 
8-level, two-dimensional DOE.) 

14 



A diffraction efficiency upper bound of 91.15 percent is generated by the 

phase 6ub{x, y). 

Oub(x,y) x = — 3 x = -2 x = -l x = 0 £ = 1 x = 2 x = 3 

y = -3 1.2566 0.2038 -0.1017 -2.9513 -0.1017 0.2038 1.2566 

y = -2 1.1104 0.5581 -0.7317 -2.7790 -0.7317 0.5581 1.1104 

y = -i 0.6649 -0.2590 -1.8587 2.5672 -1.8587 -0.2590 0.6649 

y = 0 -2.9513 -2.7790 2.5672 0.0000 2.5672 -2.7790 -2.9513 

y = i 0.6649 -0.2590 -1.8587 2.5672 -1.8587 -0.2590 0.6649 

y = 2 1.1104 0.5581 -0.7317 -2.7790 -0.7317 0.5581 1.1104 

y = 3 1.2566 0.2038 -0.1017 -2.9513 -0.1017 0.2038 1.2566 

The phase assumes an 8-level phase-only DOE; however, no symmetry 
constraints were imposed on the problem—the symmetry exhibited in the 
phase results from the symmetry in the array intensity. The magnitude and 
phase of the upper bound Qub{u, v) in the spatial frequency domain are 
represented in figures 10(a) and (b). An alternate representation is the com- 
plex plane representation in figure 11. The IFTA must take these data 
points and map them to eight equally spaced discrete values on the unit 
circle. 

The phase of the element designed by the IFTA is represented in figure 12. 
The intensity \p{x, y)\2 generated by this element follows. 

\p(x,y)\2 x = — 3 x = -2 x = -l x = 0 x = l x = 2 x = 3 

y = -3 0.0003 0.0016 0.0046 0.0062 0.0046 0.0016 0.0003 

V = -2 0.0016 0.0093 0.0235 0.0307 0.0235 0.0093 0.0016 

y = -i 0.0046 0.0234 0.0541 0.0698 0.0541 0.0234 0.0046 

y = 0 0.0062 0.0305 0.0699 0.0000 0.0699 0.0305 0.0062 

y = i 0.0046 0.0234 0.0541 0.0698 0.0541 0.0234 0.0046 

y = 2 0.0016 0.0093 0.0235 0.0307 0.0235 0.0093 0.0016 

y = 3 0.0003 0.0016 0.0046 0.0062 0.0046 0.0016 0.0003 

The diffraction efficiency of the generated array is 91.97 percent, which 
is greater than the upper bound due to the presence of error: ei„t = 6.90 x 
10-6 for amin = 0.92. The noise fluctuations per spot erms = 0.376 x 10~3. 
Therefore, the DOE satisfies the design specifications exceptionally well. 
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Figure 10. 
Representation of 
Qub(u,v) fora7x7 
fanout (two periods 
in the spatial fre- 
quency domain (u, v) 
are shown in 
(a) \Qub(u,v)\,and 
(b)arg{Qub(u,v)}). 

Figure 11. Complex 
plane representation 
of Qub(u,v). 

Figure 12. Phase 
representation of 
8-level phase-only 
array generator (two 
replications of the 
unit cell are shown). 

w% 
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Fabrication of the 8-level element requires the three binary masks shown in 
figure 13. White indicates the areas to be etched; black indicates the areas 
in which etching should not take place. The horizontal scale of the masks is 
half that of the phase function, due to the different horizontal and vertical 
spacings between spots. The mask set was used by Honeywell to fabricate 
the element, which is currently being characterized at the Army Research 
Laboratory. 

4.  Summary 
In this work, I used two applications of DOEs in an optical A/D converter 
to highlight the procedure for designing diffractive elements using scalar 
diffraction theory. The selection of models for the optical system and fab- 
rication technology as well as the proper statement of the design in terms 
of optimization, is essential to this procedure. I designed high-efficiency, 
low-noise elements using phase, amplitude, and scale design freedoms. 

Figure 13. Binary 
amplitude mask set 
necessary to fabricate 
an 8-level phase-only 
array generator 
(single period repre- 
sentation of mask 
used to etch 
(a) 7r-phase, 
(b) 7i72-phase, 
and (c) 7i74-phase). 
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Appendix A 

Appendix A 

The following tables indicate the intensity responses of the array genera- 
tors designed in section 3. 

Upper Bound: 

|p(z,y)l2 x = -2 x = -l x = 0 x = l x = 2 

y = -2 0.0315 0.0315 0.0315 0.0315 0.0315 

y = -l 0.0315 0.0315 0.0315 0.0315 0.0315 

y = 0 0.0315 0.0315 0.0315 0.0315 0.0315 

y = l 0.0315 0.0315 0.0315 0.0315 0.0315 

y = 2 0.0315 0.0315 0.0315 0.0315 0.0315 

Dammann Grating: 

\p(x,y)\2 x = -2 x = -l x = 0 x=l x = 2 

y = -2 0.0240 0.0239 0.0240 0.0239 0.0240 

y = -i 0.0239 0.0239 0.0239 0.0239 0.0239 

y = o 0.0240 0.0239 0.0240 0.0239 0.0240 

y = \ 0.0239 0.0239 0.0239 0.0239 0.0239 

y = 2 0.0240 0.0239 0.0240 0.0239 0.0240 

Quantized Upper Bound: 

\p{x,y)\2 x = -2 x = -l x = 0 x=l x = 2 

y = -2 0.0225 0.0265 0.0239 0.0365 0.0294 

y = -l 0.0244 0.0347 0.0333 0.0532 0.0454 

y = 0 0.0187 0.0395 0.0298 0.0395 0.0187 

y = l 0.0454 0.0532 0.0333 0.0347 0.0244 

y = 2 0.0294 0.0365 0.0239 0.0265 0.0225 
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Appendix A 

IFTA Design: 

\p(x,y)\2 x = -2 x = -l x = 0 x=l x = 2 

y = -2 0.0284 0.0254 0.0295 0.0306 0.0266 

y = -l 0.0272 0.0298 0.0278 0.0262 0.0276 

y = o 0.0254 0.0296 0.0289 0.0296 0.0254 

y = \ 0.0276 0.0262 0.0278 0.0298 0.0272 

y = 2 0.0266 0.0306 0.0295 0.0254 0.0284 

Annealed Design: 

\p(x,y)\2 x = -2 x = -l x = 0 x=l x = 2 

y = -2 0.0316 0.0315 0.0331 0.0285 0.0285 

y = -l 0.0302 0.0318 0.0297 0.0297 0.0313 

y = 0 0.0301 0.0296 0.0322 0.0296 0.0301 

y = l 0.0313 0.0297 0.0297 0.0318 0.0302 

y = 2 0.0285 0.0285 0.0331 0.0315 0.0316 
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